The sensitivity of marine N2 fixation to dissolved inorganic nitrogen
نویسنده
چکیده
The dominant process adding nitrogen (N) to the ocean, di-nitrogen (N(2)) fixation, is mediated by prokaryotes (diazotrophs) sensitive to a variety of environmental factors. In particular, it is often assumed that consequential rates of marine N(2) fixation do not occur where concentrations of nitrate (NO(-) (3)) and/or ammonium (NH(+) (4)) exceed 1μM because of the additional energetic cost associated with assimilating N(2) gas relative to NO(-) (3) or NH(+) (4). However, an examination of culturing studies and in situ N(2) fixation rate measurements from marine euphotic, mesopelagic, and benthic environments indicates that while elevated concentrations of NO(-) (3) and/or NH(+) (4) can depress N(2) fixation rates, the process can continue at substantial rates in the presence of as much as 30μM NO(-) (3) and/or 200μM NH(+) (4). These findings challenge expectations of the degree to which inorganic N inhibits this process. The high rates of N(2) fixation measured in some benthic environments suggest that certain benthic diazotrophs may be less sensitive to prolonged exposure to NO(-) (3) and/or NH(+) (4) than cyanobacterial diazotrophs. Additionally, recent work indicates that cyanobacterial diazotrophs may have mechanisms for mitigating NO(-) (3) inhibition of N(2) fixation. In particular, it has been recently shown that increasing phosphorus (P) availability increases diazotroph abundance, thus compensating for lower per-cell rates of N(2) fixation that result from NO(-) (3) inhibition. Consequently, low ambient surface ocean N:P ratios such as those generated by the increasing rates of N loss thought to occur during the last glacial to interglacial transition may create conditions favorable for N(2) fixation and thus help to stabilize the marine N inventory on relevant time scales. These findings suggest that restricting measurements of marine N(2) fixation to oligotrophic surface waters may underestimate global rates of this process and contribute to uncertainties in the marine N budget.
منابع مشابه
Chasing after Non-cyanobacterial Nitrogen Fixation in Marine Pelagic Environments
Traditionally, cyanobacterial activity in oceanic photic layers was considered responsible for the marine pelagic dinitrogen (N2) fixation. Other potentially N2-fixing bacteria and archaea have also been detected in the pelagic water column, however, the activity and importance of these non-cyanobacterial diazotrophs (NCDs) remain poorly constrained. In this perspective we summarize the N2 fixa...
متن کاملOptimality-based model of phytoplankton growth and diazotrophy
The notion that excess phosphorus (P) and high irradiance favour pelagic diazotrophy is difficult to reconcile with diazotroph behaviour in laboratory experiments and also with the observed distribution of N2-fixing Trichodesmium, e.g. in the relatively nitrogen (N)-rich North Atlantic Ocean. Nevertheless, this view currently provides the stateof-the-art framework to understand both past dynami...
متن کاملA new perspective on environmental controls of marine nitrogen fixation
Growing slowly, marine N2 fixers are generally expected to be competitive only where nitrogen (N) supply is low relative to that of phosphorus (P) with respect to the cellular N:P ratio (R) of nonfixing phytoplankton. This is at odds with observed high N2 fixation rates in the oligotrophic North Atlantic where the ratio of nutrients supplied to the surface is elevated in N relative to the avera...
متن کاملMolecular evidence for sediment nitrogen fixation in a temperate New England estuary
Primary production in coastal waters is generally nitrogen (N) limited with denitrification outpacing nitrogen fixation (N2-fixation). However, recent work suggests that we have potentially underestimated the importance of heterotrophic sediment N2-fixation in marine ecosystems. We used clone libraries to examine transcript diversity of nifH (a gene associated with N2-fixation) in sediments at ...
متن کاملDiversity and Activity of Diazotrophs in Great Barrier Reef Surface Waters
Discrepancies between bioavailable nitrogen (N) concentrations and phytoplankton growth rates in the oligotrophic waters of the Great Barrier Reef (GBR) suggest that undetermined N sources must play a significant role in supporting primary productivity. One such source could be biological dinitrogen (N2) fixation through the activity of "diazotrophic" bacterioplankton. Here, we investigated N2 ...
متن کامل